Validation of Viscoelastic and Nonlinear Liver Model for Needle Insertion from in Vivo Experiments
نویسندگان
چکیده
This paper shows the viscoelastic and nonlinear liver model for organ model based needle insertion, in which the deformation of an organ is estimated and predicted, and the needle trajectory is decided with organ deformation taken into consideration. An organ model including detailed material characteristics is important in order to achieve the proposed method. Firstly, the material properties of the liver are modeled from the measured data and its viscoelastic characteristics are represented by differential equations, including the term of the fractional derivative. Nonlinearity in terms of the stiffness was measured, and modeled using the quadratic function of strain. Next, a solution of an FE(Finite element) model using such material properties is shown. We use the sampling time scaling property as the solution for the viscoelastic system, while the solution for a nonlinear system using the Euler method and the Modified Newton-Raphson method is also shown. Finally, the deformation of liver model is calculated and pig liver of in vivo situation is obtained from medical ultrasound equipment. Comparing the relationship between needle displacement and force on real liver and liver model, we validate the proposed model.
منابع مشابه
A Computational study on the effect of different design parameters on the accuracy of biopsy procedure
Needle insertion is a minimally invasive technique in diagnosing and treating tumors. However, to perform a surgery accurately, the tissue should have minimum amount of displacement during needle insertion so that it reaches the target tissue. Therefore, the tissue membrane has to move less to decrease rupturing under the membrane. In this study, the effect of different design parameters on dis...
متن کاملEstimation of fracture toughness of liver tissue: experiments and validation.
The mechanical interaction between the surgical tools and the target soft tissue is mainly dictated by the fracture toughness of the tissue in several medical procedures, such as catheter insertion, robotic-guided needle placement, suturing, cutting or tearing, and biopsy. Despite the numerous experimental works on the fracture toughness of hard biomaterials, such as bone and dentin, only a ver...
متن کاملEffects of Rotational Motion in Robotic Needle Insertion
Background: Robotic needle insertion in biological tissues has been known as one the most applicable procedures in sampling, robotic injection and different medical therapies and operations.Objective: In this paper, we would like to investigate the effects of angular velocity in soft tissue insertion procedure by considering force-displacement diagram. Non-homogenous camel liver can be exploite...
متن کاملViscoelastic Micropolar Convection Flows from an Inclined Plane with Nonlinear Temperature: A Numerical Study
An analytical model is developed to study the viscoelastic micropolar fluid convection from an inclined plate as a simulation of electro-conductive polymer materials processing with nonlinear temperature. Jeffery’s viscoelastic model is deployed to describe the non-Newtonian characteristics of the fluid and provides a good approximation for polymers. Micro-structural is one of the characteristi...
متن کاملThe effect of different needle-insertion depths on the accuracy of the Root ZX II and Root ZX mini apex locators in the presence of various irrigants
BACKGROUND AND AIM: The aim of the present study was to evaluate the effect of different needle-insertion depths on the accuracy of the Root ZX II and Root ZX mini apex locators in the presence of various irrigants. METHODS: Ninety extracted single-canal human teeth were used in nine experimental groups. The coronal one-third of the canals was preflared, and the length to the major foramen was ...
متن کامل